DEVELOPABILITY AND RELATED PROPERTIES OF THE GENERALIZED COMPACT-OPEN TOPOLOGY

ĽUBICA HOLÁ AND LÁSZLÓ ZSILINSZKY

ABSTRACT. Developability and related properties (like weak developability, G_{δ} -diagonal, G^*_{δ} -diagonal, submetrizability) of the generalized compact-open topology τ_C on partial continuous functions \mathcal{P} with closed domains in X and values in Y are studied. First countability of (\mathcal{P}, τ_C) is also characterized. New results are obtained on weak developability, submetrizability, and first countability for the classical compact-open topology on the space of continuous functions with a general range space Y.

1. INTRODUCTION AND PRELIMINARIES

Perhaps the first to consider a topological structure on the space of partial maps was Zaremba [40] in 1936. Later, in 1955, Kuratowski [27] studied the Hausdorff metric topology on the space of partial maps with compact domains.

The generalized compact-open topology τ_C on the space of partial continuous functions with closed domains was introduced by J. Back in [5] in connection with investigating utility functions emerging in mathematical economics. It also proved to be a useful tool in studying convergence of dynamic programming models [39], [29], as well as in applications to the theory of differential equations [8]. This new interest in τ_C complements the attention paid to spaces of partial maps in the past [40], [27], [28], [1], [2], [7], [36], and more recently in [15], [38], [26], [9], [10], [12], [13], [21], [22], [23]. The Hausdorff metric topology on the space of partial maps with closed domains was studied in [11].

Various topological properties of τ_C have already been established, e.g. separation axioms in [17], complete metrizability in [18], [23] and other completeness type properties in [21], [23] and [35], respectively; also in [12], [13], the authors study topological properties of spaces of partial maps in a more general setting.

Continuing the research started in [17],[35],[21],[23], in the present paper we will focus on some generalized metric properties, and first countability of the generalized compact-open topology, as well as of the classical compact-open topology.

Unless otherwise noted, all spaces are nontrivial Hausdorff spaces. If X is a topological space, then B^c , int B, and \overline{B} will stand for the complement, interior and closure of $B \subseteq X$, respectively. Denote by CL(X) the family of nonempty closed subsets of X, and by K(X) the nonempty compact subsets of X. For any $B \in CL(X)$ and a topological space Y, C(B, Y) will stand for the space of continuous

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C35; Secondary 54E18, 54E50, 54D20, 54B20, 54C60, 54D99.

Key words and phrases. Generalized compact-open topology, Fell topology, compact-open topology, 1st countable spaces, (weakly) developable spaces, spaces with a G_{δ} -diagonal.

This work was supported by the Science and Technology Assistance Agency under the contract No. APVT-51-006904.

functions from B to Y. A partial map is a pair (B, f) such that $B \in CL(X)$, and $f \in C(B, Y)$. Denote by $\mathcal{P} = \mathcal{P}(X, Y)$ the family of all partial maps.

The so-called generalized compact-open topology τ_C on \mathcal{P} [21] is the topology having subbase elements of the form

$$[U] = \{ (B, f) \in \mathcal{P} : B \cap U \neq \emptyset \},\$$

$$[K:V] = \{(B, f) \in \mathcal{P} : f(K \cap B) \subseteq V\},\$$

where U is open in $X, K \in K(X)$, and V is an open (possibly empty) subset of Y.

The compact-open topology τ_{CO} on C(X, Y) [14], [30] has subbase elements of the form

$$[K,V] = \{ f \in C(X,Y) : f(K) \subseteq V \},\$$

where $K \in K(X)$, and $V \subseteq Y$ is open.

Denote by τ_F the *Fell topology* on CL(X) [6], [25] having subbase elements of the form

$$U^- = \{A \in CL(X) : A \cap U \neq \emptyset\}, \text{ and } (K^c)^+ = \{A \in CL(X) : A \subseteq K^c\}$$

with U open in X, and $K \in K(X)$. If we replace the compact set K by a closed set we obtain subbase elements for the classical *Vietoris topology* [6].

The following proposition shows the relationship between the above mentioned topologies, and will be helpful for our analysis.

Proposition 1.1 ([18], [23]).

- (1) X, and $(CL(X), \tau_F)$ embed in (\mathcal{P}, τ_C) ; further $(CL(X), \tau_F)$ embeds as a closed set in (\mathcal{P}, τ_C) , if X is locally compact.
- (2) Y, and $(C(X,Y), \tau_{CO})$ embed as closed subsets in (\mathcal{P}, τ_C) .

Let X be a hemicompact space (i.e. in K(X) ordered by inclusion, there exists a countable cofinal subfamily [14]). If X is also locally compact, fix a cofinal sequence $\{C_n\}$ of compacts that is strongly increasing (i.e. $C_n \subseteq \operatorname{int} C_{n+1}$).

Suppose now that X is a hemicompact metrizable space with a compatible metric d, and Y is Hausdorff. Denote by S(x, r) the open ball with center x, and radius r. Let $n \in \omega$. For a collection \mathcal{V} of open sets in Y, a finite collection \mathcal{U} of open balls of radius at most $\frac{1}{n}$ that are subsets of C_{n+1} , and $\varphi: \mathcal{U} \to \mathcal{V}$, the set

$$H_n(\mathcal{V}, \mathcal{U}, \varphi) = [C_n \setminus \cup \mathcal{U} : \emptyset] \cap \bigcap_{U \in \mathcal{U}} ([U] \cap [\overline{U} : \varphi(U)])$$

is open in (\mathcal{P}, τ_C) . Put $\mathcal{H}_n(\mathcal{V}) = \{H_n(\mathcal{V}, \mathcal{U}, \varphi) : \mathcal{U}, \varphi\}.$

Lemma 1.2. Let X be a hemicompact metrizable space, and \mathcal{V} an open cover of Y. Then $\mathcal{H}_n(\mathcal{V})$ is an open cover of \mathcal{P} for each $n \in \omega$.

Proof. Let $(B, f) \in \mathcal{P}$. If $B \cap C_n = \emptyset$, put $\mathcal{U} = \emptyset$ and $\varphi = \emptyset$, then $(B, f) \in H_n(\mathcal{V}, \mathcal{U}, \varphi) \in \mathcal{H}_n(\mathcal{V})$. If $B \cap C_n \neq \emptyset$, then by continuity of f, and compactness of $B \cap C_n$, there exists a finite family \mathcal{U} of open balls of radius $\leq \frac{1}{n}$ that are subsets of C_{n+1} such that $B \cap C_n \subseteq \cup \mathcal{U}$, and for all $U \in \mathcal{U}$ there is $V_U \in \mathcal{V}$ with $f(B \cap \overline{U}) \subseteq V_U$. If $\varphi(U) = V_U$ for all $U \in \mathcal{U}$, then $(B, f) \in H_n(\mathcal{V}, \mathcal{U}, \varphi) \in \mathcal{H}_n(\mathcal{V})$.

A space X is almost σ -compact, provided there is $C_n \in K(X)$ with $X = \bigcup_{n \in \omega} C_n$ (see [30]). If $T = \bigoplus_n C_n$ is the topological sum, and $p: T \to X$ is the natural map, define the function

$$p^*: (C(X,Y), \tau_{CO}) \to (C(T,Y), \tau_{CO})$$
 via $p^*(f) = f \circ p$.

Proposition 1.3. Let Y be a topological space.

- (1) If X is almost σ -compact, then p^* is a continuous injection.
- (2) If X is hemicompact, then p^* is an embedding.
- (3) $(C(T,Y), \tau_{CO})$ is homeomorphic to $\Pi_n(C(C_n,Y), \tau_{CO})$.

Proof. (1) p is almost onto (i.e. its image is a dense subset of its range [30]), so [30, Theorem 2.2.6(a), Corollary 2.2.8(b)] applies.

(2) p is k-covering (i.e. for each $K \in K(X)$ there is $L \in K(T)$ with $K \subseteq p(L)$), so [30, Corollary 2.2.8(b)] applies.

(3) See [30, Corollary 2.4.7]

2. G_{δ} -diagonal and related properties

A topological space Y is submetrizable, if it has a coarser metrizable topology; further, Y has a G_{δ} -diagonal (G_{δ}^* -diagonal, resp.), provided there is sequence \mathcal{V}_m of open covers of Y such that $\{y\} = \bigcap_m \operatorname{St}(y, \mathcal{V}_m)$ ($\{y\} = \bigcap_m \overline{\operatorname{St}(y, \mathcal{V}_m)}$, resp.) for each $y \in Y$, where $\operatorname{St}(y, \mathcal{V}_m) = \bigcup \{V \in \mathcal{V}_m : y \in V\}$ (see [16]). Finally, Y has a regular G_{δ} -diagonal, provided there is a sequence \mathcal{V}_m of open covers of Y such that if $y_0, y_1 \in Y, y_0 \neq y_1$, then there exists $m \in \omega$ and open sets W_0, W_1 containing y_0, y_1 respectively such that no member of \mathcal{V}_m intersects both W_0, W_1 [41]. These notions are related as follows:

submetrizable \Rightarrow regular G_{δ} -diagonal \Rightarrow G_{δ} -diagonal \Rightarrow G_{δ} -diagonal.

Submetrizable spaces, spaces with a regular G_{δ} -diagonal, and with a G_{δ}^* -diagonal, respectively, are Hausdorff.

Theorem 2.1. The following are equivalent.

- (1) (\mathcal{P}, τ_C) is submetrizable (with a regular G_{δ} -diagonal, with a G_{δ}^* -diagonal, T_2 with a G_{δ} -diagonal, resp.),
- (2) X is hemicompact, metrizable, and Y is submetrizable (with a regular G_{δ} -diagonal, with a G_{δ}^* -diagonal, T_2 with a G_{δ} -diagonal, resp.).

Proof. (1) \Rightarrow (2) (*CL*(*X*), τ_F), and *Y* are submetrizable (with a regular G_{δ} -diagonal, with a G_{δ}^* -diagonal, T_2 with a G_{δ} -diagonal, resp.), since they embed in (\mathcal{P}, τ_C). It follows that *X* is hemicompact, and metrizable [20, Theorem 7].

 $(2) \Rightarrow (1)$ Let X be a hemicompact metrizable space.

• Submetrizability of \mathcal{P} : if Y is submetrizable, then there exists a topology τ' on Y, which is weaker than the original topology τ on Y, such that (Y, τ') is metrizable. Then by [18, Theorem 2.4], $(\mathcal{P}(X, (Y, \tau')), \tau_C)$ is metrizable, and hence, $(\mathcal{P}(X, (Y, \tau)), \tau_C)$ is submetrizable.

Let $\{\mathcal{V}_m\}_m$ be a sequence of open covers of Y satisfying the regular G_{δ} -diagonal $(G_{\delta}^*$ -diagonal, G_{δ} -diagonal, resp.) property. By Lemma 1.2, $\{\mathcal{H}_n(\mathcal{V}_m) : n, m \in \omega\}$ is a sequence of open covers of (\mathcal{P}, τ_C) , and we will show that it is a regular G_{δ} -diagonal $(G_{\delta}^*$ -diagonal, G_{δ} -diagonal, resp.) sequence.

• Regular G_{δ} -diagonal property of \mathcal{P} : let $(B, f), (D, g) \in \mathcal{P}$ be distinct. Assume first that $B \neq D$, say, there is some $x \in B \setminus D$ (the argument is identical, if $x \in D \setminus B$). Find n so that $\overline{S(x, \frac{1}{n})} \subseteq \operatorname{int} C_n \setminus D$. Then $\mathcal{W}_0 = [S(x, \frac{1}{3n})]$, and $\mathcal{W}_1 = [\overline{S(x, \frac{1}{n})} : \emptyset]$ are \mathcal{P} -neighborhoods of (B, f), (D, g), respectively. If some $H_n = H_{3n}(\mathcal{V}_1, \mathcal{U}, \varphi) \in \mathcal{H}_{3n}(\mathcal{V}_1)$ hits \mathcal{W}_0 , choose $(E, h) \in H_n \cap \mathcal{W}_0$. Let $e \in$ $E \cap S(x, \frac{1}{3n}) \subseteq C_n$, then there is $U \in \mathcal{U}$ with $e \in U$, so for all $u \in U$ we have

$$d(x, u) \le d(x, e) + d(e, u) < \frac{1}{3n} + \operatorname{diam}(U) \le \frac{1}{3n} + \frac{2}{3n} = \frac{1}{n};$$

thus, $U \subseteq S(x, \frac{1}{n})$, which implies that H_n misses \mathcal{W}_1 .

Now assume that B = D, but $f(x) \neq g(x)$ for some $x \in B$, and choose Y-open neighborhoods W_0, W_1 of f(x), g(x), respectively, and $m \in \omega$ such that no member of \mathcal{V}_m hits both W_0, W_1 . Find $n \in \omega$ so that $S(x, \frac{1}{n}) \subseteq C_n$,

$$f(B \cap \overline{S(x, \frac{1}{n})}) \subseteq W_0$$
, and $g(D \cap \overline{S(x, \frac{1}{n})}) \subseteq W_1$.

Then

$$\mathcal{W}_0 = [S(x, \frac{1}{3n})] \cap [\overline{S(x, \frac{1}{n})} : W_0], \text{ and } \mathcal{W}_1 = [S(x, \frac{1}{3n})] \cap [\overline{S(x, \frac{1}{n})} : W_1]$$

are \mathcal{P} -neighborhoods of (B, f), (D, g), respectively. If some $H_n = H_{3n}(\mathcal{V}_m, \mathcal{U}, \varphi) \in$ $\mathcal{H}_{3n}(\mathcal{V}_m)$ hits \mathcal{W}_0 , choose $(E,h) \in H_n \cap \mathcal{W}_0$. Let $e \in E \cap S(x, \frac{1}{3n}) \subseteq C_n$, then there is $U \in \mathcal{U}$ with $e \in U$, so (as above) $U \subseteq S(x, \frac{1}{n})$; thus,

$$h(e) \in h(E \cap \overline{U}) \subseteq \varphi(U) \cap W_0,$$

hence, $\varphi(U) \in \mathcal{V}_m$ will not hit W_1 , which implies that H_n misses \mathcal{W}_1 . • G^*_{δ} -diagonal property of \mathcal{P} : let $D_0 = (B_0, f_0) \in \mathcal{P}$, and

$$_{\delta}$$
-diagonal property of \mathcal{P} : let $D_0 = (B_0, f_0) \in \mathcal{P}$, an

$$D \in \bigcap_{n,m \in \omega} \operatorname{St}(D_0, \mathcal{H}_n(\mathcal{V}_m)), \text{ where } D = (B, f).$$

It suffices to prove that $D = D_0$:

CLAIM. $B = B_0$

Suppose there is $x \in B \setminus B_0$. Let n be such that $x \in C_n$, and $B_0 \cap C_n \neq \emptyset$. Let k > n be such that $S(x, \frac{1}{k}) \subseteq \operatorname{int} C_{n+1} \setminus B_0$. Since $D \in \overline{\operatorname{St}(D_0, \mathcal{H}_{4k}(\mathcal{V}_1))}$, there is

$$(H,g) \in [S(x,1/4k)] \cap \operatorname{St}(D_0,\mathcal{H}_{4k}(\mathcal{V}_1)))$$

and hence some $z \in H \cap S(x, \frac{1}{4k})$. Further, there is a finite family \mathcal{U} of open balls of radius at most $\frac{1}{4k}$, and $\varphi: \mathcal{U} \to \mathcal{V}_1$ such that $(H,g), D_0 \in H_{4k}(\mathcal{V}_1, \mathcal{U}, \varphi)$. But then there is $U \in \mathcal{U}$ with $z \in U$ and $U \cap B_0 \neq \emptyset$, which is a contradiction, since for $b \in B_0 \cap U \text{ we have } d(z,b) \leq \operatorname{diam}(U) \leq \frac{1}{2k}, \text{ so } d(x,b) \leq d(x,z) + d(z,b) \leq \frac{3}{4k} < \frac{1}{k};$ on the other side, $S(x, \frac{1}{k}) \subseteq B_0^c$, so $d(x, b) \ge \frac{1}{k}$. Now suppose $x \in B_0 \setminus B$, and L is an open set with compact closure such that

 $x \in L \subseteq \overline{L} \subseteq B^c$; then $[\overline{L} : \emptyset]$ is a τ_C -neighborhood of D. There is $n \in \omega$ and k > n such that $x \in C_n$, and $S(x, \frac{1}{k}) \subseteq L$. Since $D \in \overline{\operatorname{St}(D_0, \mathcal{H}_{3k}(\mathcal{V}_1))}$, there is $(H,g) \in [\overline{L} : \emptyset] \cap \operatorname{St}(D_0, \mathcal{H}_{3k}(\mathcal{V}_1))$, so there is a finite family \mathcal{U} of open balls of radius at most $\frac{1}{3k}$, and $\varphi : \mathcal{U} \to \mathcal{V}_1$ such that $D_0, (H,g) \in H_{3k}(\mathcal{V}_1, \mathcal{U}, \varphi)$. It follows that for some $U \in \mathcal{U}, x \in U$ and $U \cap H \neq \emptyset$, say, $h \in U \cap H$. Then $d(x,h) \leq \operatorname{diam}(U) \leq \frac{2}{3k} < \frac{1}{k}$, so $h \in \overline{L}$, which is impossible since $(H,g) \in [L:\emptyset]$.

CLAIM. $f_0 = f$.

Suppose $f_0(x) \neq f(x)$ for some $x \in B = B_0$. Then there is $m \in \omega$ with $f(x) \notin \overline{\operatorname{St}(f_0(x), \mathcal{V}_m)}$. We can find an X-open set O with compact closure such that $x \in O$, and $f(\overline{O} \cap B) \subseteq Y \setminus \text{St}(f_0(x), \mathcal{V}_m)$. Let $n \in \omega$ be such that $x \in C_n$, and $S(x, \frac{3}{n}) \subseteq O$. Then $[\overline{O}: Y \setminus \overline{\operatorname{St}(f_0(x), \mathcal{V}_m)}]$ is a τ_C -neighborhood of D, so there is

$$(H,g) \in [\overline{O}: Y \setminus \overline{\operatorname{St}(f_0(x), \mathcal{V}_m)}] \cap \operatorname{St}(D_0, \mathcal{H}_n(\mathcal{V}_m)).$$

Then we can find a finite family \mathcal{U} of open balls of radius at most $\frac{1}{n}$, and $\varphi: \mathcal{U} \to \mathcal{V}_m$ such that $(H, g), D_0 \in H_n(\mathcal{V}_m, \mathcal{U}, \varphi)$. Hence, there is $U \in \mathcal{U}$ with $x \in U$ and $U \cap H \neq \emptyset$ such that $f_0(x) \in \varphi(U)$, and $g(\overline{U} \cap H) \subseteq \varphi(U)$; thus, $g(\overline{U} \cap H) \subseteq \operatorname{St}(f_0(x), \mathcal{V}_m)$. On the other side, if $h \in \overline{U} \cap H$, then $d(x, h) \leq \operatorname{diam}(\overline{U}) \leq \frac{2}{n}$, so $\overline{U} \cap H \subseteq S(x, \frac{3}{n}) \subseteq O$; thus, $g(\overline{U} \cap H) \subseteq g(\overline{O} \cap H) \subseteq (\overline{\operatorname{St}(f_0(x), \mathcal{V}_m)})^c$.

• G_{δ} -diagonal property of \mathcal{P} : let $D_0 = (B_0, f_0) \in \mathcal{P}$ and

$$D \in \bigcap_{n,m \in \omega} \operatorname{St}(D_0, \mathcal{H}_n(\mathcal{V}_m)), \text{ where } D = (B, f)$$

We will show that $D = D_0$: let $x \in B$. We can find an n such that $x \in C_n$, and $B_0 \cap C_n \neq \emptyset$. Fix $m \in \omega, m \ge n$. Then there is a finite family \mathcal{U} of open balls of radius at most $\frac{1}{m}$ that are subsets of C_{m+1} , and a function $\varphi: \mathcal{U} \to \mathcal{V}_m$ such that $D, D_0 \in H_m(\mathcal{V}_m, \mathcal{U}, \varphi)$. Then there exists $U_m \in \mathcal{U}$ with $x \in U_m$, and $B_0 \cap U_m \neq \emptyset$ such that $f(x) \in \varphi(U_m)$, and $f_0(B_0 \cap \overline{U}_m) \subseteq \varphi(U_m)$. Then $\{U_m\}_m$ is a local base at x, thus, $\{x\} = \bigcap_m B_0 \cap \overline{U}_m$. It follows, that $f(x) \in \bigcap_m \operatorname{St}(f_0(x), \mathcal{V}_m) = \{f_0(x)\}$, so $D \subseteq D_0$. It is also true, that $D_0 \in \bigcap_{n,m} \operatorname{St}(D, \mathcal{H}_n(\mathcal{V}_m))$, so we can argue as above to get $D_0 \subseteq D$; hence, $\{D_0\} = \bigcap_{n,m \in \omega} \operatorname{St}(D_0, \mathcal{H}_n(\mathcal{V}_m))$.

It was proved in [37] that, if X is compact and Y has a regular G_{δ} -diagonal $(G_{\delta}^*$ -diagonal, G_{δ} -diagonal, resp.), then $(C(X,Y),\tau_{CO})$ has a regular G_{δ} -diagonal $(G_{\delta}^*$ -diagonal, G_{δ} -diagonal, resp.); then, in [34], the same was proved for an almost σ -compact X. In our next result we give another proof, and also show that if X is an almost σ -compact space, and Y is submetrizable, then $(C(X,Y),\tau_{CO})$ is submetrizable. For $Y = \mathbb{R}$, the results concerning submetrizability, and the G_{δ} -diagonal property, were proved in [30].

Theorem 2.2. Let X be an almost σ -compact space, and Y be submetrizable (have a regular G_{δ} -diagonal, G_{δ}^* -diagonal, G_{δ} -diagonal, resp.). Then $(C(X,Y), \tau_{CO})$ is submetrizable (has a regular G_{δ} -diagonal, G_{δ}^* -diagonal, G_{δ} -diagonal, resp.).

Proof. Let $X, T = \bigoplus_n C_n$, and $p: T \to X$ be as in Proposition 1.3(1), and Y have a regular G_{δ} -diagonal (G_{δ}^* -diagonal, G_{δ} -diagonal, resp.). Since these diagonal properties are countably productive, ($C(T, Y), \tau_{CO}$) has them by Proposition 1.3(3), so by Proposition 1.3(1), ($C(X, Y), \tau_{CO}$) has a coarser topology having these diagonal properties; thus, ($C(X, Y), \tau_{CO}$) itself has them.

Let (Y, τ) be submetrizable, and $\tau' \subseteq \tau$ be a metrizable topology on Y. Then $(C(T, (Y, \tau')), \tau_{CO})$ is metrizable by [30, Exercise IV.9.1(a)], let α be this metrizable topology on $C(T, (Y, \tau'))$ that is coarser than the original $(C(T, (Y, \tau)), \tau_{CO})$. The family $\beta = \{(p^*)^{-1}(U) : U \in \alpha\}$ is a topology on C(X, Y) coarser than τ_{CO} . The mapping $p^* : (C(X, Y), \beta) \to (p^*(C(X, Y), \alpha))$ is a homeomorphism, so $(C(X, Y), \beta)$ is metrizable, and $(C(X, (Y, \tau)), \tau_{CO})$ is submetrizable.

3. Developability and related properties

Let Y be a topological space. A sequence $\{\mathcal{V}_n\}$ of open covers of Y is called a *(weak) development*, if for every $y \in Y$ and $\{V_n\}$ such that $y \in V_n \in \mathcal{V}_n$ for every n, the sequence $\{V_n\}$ (resp. $\{\bigcap_{i \leq n} V_i\}$) is a base at y. A space with a (weak) development is called *(weakly) developable*; a *Moore space* is a regular developable space. A sequence $\{\mathcal{V}_n\}$ of open covers of Y is called a *weak k-development*, provided

for each $K \in K(Y)$, and every finite $\mathcal{W}_n \subseteq \mathcal{V}_n$ such that $K \subseteq \bigcup \mathcal{W}_n$, and $K \cap W \neq \emptyset$ for every $W \in \mathcal{W}_n$, the sequence $\{\bigcap_{i \le n} (\bigcup \mathcal{W}_i)\}$ is a base at K. A space with a weak k-development is called weakly k-developable.

Observe, that a T_1 weakly developable space has a G_{δ} -diagonal, and developable, as well as, weakly k-developable spaces are weakly developable. On the other side, there are weakly k-developable spaces which are not developable [4], as well as developable Hausdorff spaces that are not weakly k-developable [3].

Theorem 3.1. Let X be a hemicompact metrizable space, and Y a weakly kdevelopable space. Then (\mathcal{P}, τ_C) is weakly developable.

Proof. Let $\{\mathcal{V}_n\}$ be a weak k-development of Y, and, without loss of generality, suppose that \mathcal{V}_{n+1} is a refinement of \mathcal{V}_n for every $n \in \omega$. We claim that $\{\mathcal{H}_n(\mathcal{V}_n)\}$ is a weak development in (\mathcal{P}, τ_C) : that $\mathcal{H}_n(\mathcal{V}_n)$ is an open cover of (\mathcal{P}, τ_C) for every $n \in \omega$, follows from Lemma 1.2.

Let $(B, f) \in (\mathcal{P}, \tau_C)$, and $H_n = H_n(\mathcal{V}_n, \mathcal{U}_n, \varphi_n) \in \mathcal{H}_n(\mathcal{V}_n)$ be such that $(B, f) \in$ H_n for every $n \in \omega$. To prove that $\bigcap_{i \leq n} H_n$ is a base at (B, f), first choose an Xopen G with $(B, f) \in [G]$, and pick some $b \in B \cap G$. There is $n \in \omega$ such that $b \in C_n$, and $S(b, 1/n) \subseteq G$. Now, $(B, f) \in H_{3n}$, and since $b \in C_n$, we can find a $U \in \mathcal{U}_{3n}$ with $b \in U$; thus, if $(C,g) \in H_{3n}$, and $c \in C \cap U$, then $d(b,c) \leq \text{diam}U \leq \frac{2}{3n} < \frac{1}{n}$, so $C \cap G \neq \emptyset$, which implies, that $(B, f) \in H_{3n} \subseteq [G]$.

Now let $(B, f) \in [K : V]$, where $K \in K(X)$, V is Y-open, and assume $B \cap K = \emptyset$. Then dist(K, B) > 0, so we can find $n \in \omega$ such that $K \subseteq C_n$, and dist(K, B) > 2/n. To show that $H_n \subseteq [K:V]$, choose $(C,g) \in H_n$. If $\mathcal{U}_n = \emptyset$, then $C \cap K = \emptyset$, and we are done. If $\mathcal{U}_n \neq \emptyset$, assume that $K \cap U \neq \emptyset$ for some $U \in \mathcal{U}_n$, and find $k \, \in \, K \cap U, b \, \in \, B \cap U.$ Then $\operatorname{dist}(K,B) \, \le \, d(k,b) \, \le \, \operatorname{diam} U \, \le \, 2/n,$ which is impossible, so $K \cap (\bigcup \mathcal{U}_n) = \emptyset$; thus, $K \subseteq C_n \setminus \bigcup \mathcal{U}_n$, and again, $C \cap K = \emptyset$.

Finally, suppose $B \cap K \neq \emptyset$. Then $f(B \cap K) \subseteq V$, so by compactness of K, there is $\delta > 0$ such that $f(B \cap \overline{S(K,\delta)}) \subseteq V$, and $\overline{S(K,\delta)}$ is compact, where $S(K,\delta) = \bigcup_{x \in K} S(x,\delta)$. Choose $n_0 \in \omega$ so that $\frac{2}{n_0} < \delta$ and $\overline{S(K,\delta)} \subseteq C_{n_0}$. For $n \geq n_0$, there is a finite collection $\emptyset \neq \mathcal{U}'_n \subseteq \mathcal{U}_n$ such that $U \cap \overline{S(K,\delta)} \cap B \neq \emptyset$ for all $U \in \mathcal{U}'_n$; put $\mathcal{W}_n = \{\varphi_n(U) : U \in \mathcal{U}'_n\}.$

Then $f(\overline{S(K,\delta)} \cap B) \subseteq \bigcup \mathcal{W}_n$, and $f(\overline{S(K,\delta)} \cap B) \cap W \neq \emptyset$ for every $W \in \mathcal{W}_n$. For $n < n_0$, \mathcal{V}_{n_0} is a refinement of \mathcal{V}_n , so for each $W \in \mathcal{W}_{n_0}$ there is $V_W \in \mathcal{V}_n$ with $W \subseteq V_W$; put $\mathcal{W}_n = \{V_W : W \in \mathcal{W}_{n_0}\}$. Since $\{\mathcal{V}_n\}$ is a weak k-development, there is $k > n_0$ such that

$$f(\overline{S(K,\delta)} \cap B) \subseteq \bigcap_{n \le k} (\bigcup \mathcal{W}_n) \subseteq V.$$

Let $n_0 \leq n \leq k$, and choose $(C,g) \in H_n$. If $C \cap K = \emptyset$, we are done, so suppose $\emptyset \neq C \cap K \subseteq C \cap C_n$. If $c \in C \cap K$, then $c \in U \in \mathcal{U}_n$, and if $b \in B \cap U$, then $\begin{aligned} d(c,b) &\leq \operatorname{diam}(U) \leq \frac{2}{n} < \delta, \text{ so } U \in \mathcal{U}'_n. \\ \text{It follows, that } \mathcal{U}''_n &= \{U \in \mathcal{U}_n : U \cap K \cap C \neq \emptyset\} \subseteq \mathcal{U}'_n, \text{ so} \end{aligned}$

$$g(C \cap K) \subseteq \bigcup \{ g(\overline{U} \cap C) : U \in \mathcal{U}_n'' \} \subseteq \bigcup \{ \varphi_n(U) : U \in \mathcal{U}_n'' \} \subseteq \bigcup \mathcal{W}_n.$$

Now, if $(C,g) \in \bigcap_{n \le k} H_n$, then

$$g(C \cap K) \subseteq \bigcap_{n_0 \le n \le k} (\bigcup \mathcal{W}_n) = \bigcap_{n \le k} (\bigcup \mathcal{W}_n) \subseteq V,$$

so $(C, g) \in [K : V]$.

Remark 3.2. If (\mathcal{P}, τ_C) is a weakly developable T_2 space, then $(CL(X), \tau_F)$ is, too (Proposition 1.1); thus, $(CL(X), \tau_F)$ is T_2 with a G_{δ} -diagonal, hence, X is a hemicompact metrizable space by [20, Theorem 7].

Theorem 3.3. Let X be a hemicompact space, and Y a weakly k-developable space. Then $(C(X,Y), \tau_{CO})$ is weakly developable.

Proof. Let $\{C_n\}$ be a cofinal family in K(X). Given $n \in \omega$, a collection \mathcal{V} of Y-open sets, a finite collection \mathcal{U} of open sets in C_n covering C_n , and $\varphi : \mathcal{U} \to \mathcal{V}$, the set

$$G_n(\mathcal{V}, \mathcal{U}, \varphi) = \bigcap_{U \in \mathcal{U}} [\overline{U}, \varphi(U)]$$

is open in $(C(X, Y), \tau_{CO})$. Let $\{\mathcal{V}_n\}$ be a weak k-development of Y such that \mathcal{V}_{n+1} refines \mathcal{V}_n for every $n \in \omega$. Then

$$\mathcal{G}_n(\mathcal{V}_n) = \{G_n(\mathcal{V}_n, \mathcal{U}, \varphi) : \mathcal{U}, \varphi\}$$

is an open cover of $(C(X,Y), \tau_{CO})$ for each n: let $f \in C(X,Y)$, and $n \in \omega$ be fixed. Then there is a finite collection $\mathcal{V}'_n \subseteq \mathcal{V}_n$ that covers the compact $f(C_n)$. By regularity of C_n , for each $V \in \mathcal{V}'_n$ and $x \in C_n \cap f^{-1}(V)$, find a C_n -open U(x)such that $x \in U(x) \subseteq \overline{U(x)} \subseteq C_n \cap f^{-1}(V)$, and choose a finite subcover \mathcal{U} of $\{U(x) : x \in C_n \cap f^{-1}(\bigcup \mathcal{V}'_n)\}$. Then for each $U \in \mathcal{U}$, there is $V_U \in \mathcal{V}'_n$ with $f(\overline{U}) \subseteq V_U$, so we can define $\varphi(U) = V_U$. Clearly, $f \in G_n(\mathcal{V}_n, \mathcal{U}, \varphi)$.

To prove that $\{\mathcal{G}_n(\mathcal{V}_n)\}\$ is a weak development, take $f \in C(X,Y)$, and $G_n = G_n(\mathcal{V}_n, \mathcal{U}_n, \varphi_n) \in \mathcal{G}_n(\mathcal{V}_n)\$ such that $f \in G_n$ for every $n \in \omega$. Consider $[K, V] \in \tau_{CO}$ with $f \in [K, V]$, and choose n_0 so that $K \subseteq C_{n_0}$.

For $n \geq n_0$, let $\mathcal{U}'_n \subseteq \mathcal{U}_n$ be such that $K \subseteq \bigcup \mathcal{U}'_n$, and $K \cap U \neq \emptyset$ for all $U \in \mathcal{U}'_n$, and put $\mathcal{W}_n = \{\varphi_n(U) : U \in \mathcal{U}'_n\}$. For $n < n_0$, \mathcal{V}_{n_0} is a refinement of \mathcal{V}_n , so for each $W \in \mathcal{W}_{n_0}$, there is $V_W \in \mathcal{V}_n$ with $W \subseteq V_W$; put $\mathcal{W}_n = \{V_W : W \in \mathcal{W}_{n_0}\}$.

Observe, that for all $n \ge n_0$, $f(K) \subseteq \bigcup \mathcal{W}_n$ and $f(K) \cap W \ne \emptyset$ for all $W \in \mathcal{W}_n$, so by weak k-developability of Y, there is $k > n_0$ such that

$$f(K) \subseteq \bigcap_{n \le k} (\bigcup \mathcal{W}_n) \subseteq V.$$

Let $n_0 \leq n \leq k$, and $g \in G_n$. Then $g(\overline{U}) \subseteq \varphi_n(U)$ for each $U \in \mathcal{U}_n$; thus,

$$g(K) \subseteq \bigcup \{g(\overline{U}) : U \in \mathcal{U}'_n\} \subseteq \bigcup \mathcal{W}_n.$$

It follows, that if $g \in \bigcap_{n \le k} G_n$, then

$$g(K) \subseteq \bigcap_{n_0 \le n \le k} (\bigcup \mathcal{W}_n) = \bigcap_{n \le k} (\bigcup \mathcal{W}_n) \subseteq V,$$

so $g \in [K, V]$, hence, $f \in \bigcap_{n \leq k} G_n \subseteq [K, V]$.

As for developability of $(C(X,Y), \tau_{CO})$, it is known that if X is hemicompact with metrizable compacts, and Y is developable, then $(C(X,Y), \tau_{CO})$ is developable [33]; further, if X is hemicompact, and Y is a Moore space with a regular G_{δ} diagonal, then $(C(X,Y), \tau_{CO})$ is a Moore space [37]. The following question from [34] seems to be still open:

Problem 3.4. Let X be a compact space, and Y a Moore space. Is $(C(X, Y), \tau_{CO})$ a Moore space?

In the last part of the paragraph, we have a result about developability of (\mathcal{P}, τ_C) :

Theorem 3.5. Let X be a topological sum of a countable family of compact metrizable spaces, and Y be developable. Then (\mathcal{P}, τ_C) is developable.

Proof. First assume that X is compact. Then the generalized compact-open topology τ_C , and the Vietoris topology τ_V coincide on \mathcal{P} . Since $X \times Y$ is developable, also $(K(X \times Y), \tau_V)$ is developable [32], so $\mathcal{P} \subseteq K(X \times Y)$ is developable.

Now, let $X = \bigoplus_{n \in \omega} C_n$, where C_n is a metrizable compact for each n. Consider $\mathcal{P}_n = \mathcal{P}(C_n, Y) \cup \{\emptyset\}$, with the topology $\tau'_C = \tau_C \cup \{\{\emptyset\}\}$. If $(B, f) \in \mathcal{P}$, define $(D_n)_n \in \Pi_n \mathcal{P}_n$ so that

$$D_n = \begin{cases} (B_n, f_n), & \text{if } B_n = B \cap C_n \neq \emptyset, \ f_n = f \upharpoonright_{B_n}, \\ \emptyset, & \text{if } B \cap C_n = \emptyset, \end{cases}$$

and put $\psi(B, f) = (D_n)_n$. It is not hard to show, that ψ is a homeomorphism, so (\mathcal{P}, τ_C) is developable, since $\Pi_n \mathcal{P}_n$ is (as a countable product of developable spaces).

4. FIRST COUNTABILITY AND RELATED PROPERTIES

Theorem 4.1. The following are equivalent:

- (1) points in (\mathcal{P}, τ_C) are G_{δ} ,
- (2) X-open sets are σ -compact, each $A \in CL(X)$ has a countable π -base (in A), and points in Y are G_{δ} .

Proof. (1) \Rightarrow (2) Points in $(CL(X), \tau_F)$ and Y are G_{δ} , since they embed in (\mathcal{P}, τ_C) . Then, by [20, Proposition 4.3(ii)], open sets in X are σ -compact; further, let $A \in CL(X)$, and $\mathcal{B}_n = ((K_n)^c)^+ \cap \bigcap_{i \in I_n} U_i^n$ be basic τ_F -open sets such that $\{A\} = \bigcap_{n \in \omega} \mathcal{B}_n$. If $\emptyset \neq U \subseteq A$ is open in A, and for all n, and $i \in I_n$, there exists $a_i^n \in U_i^n \cap A \setminus U$, then $A \setminus U \in \bigcap_{n \in \omega} \mathcal{B}_n$, which is a contradiction. It follows, that $\{A \cap U_i^n : n \in \omega, i \in I_n\}$ is a countable π -base in A.

 $(2) \Rightarrow (1)$ Let $(B_0, f_0) \in \mathcal{P}$, $B_0 \neq X$, and $B_0^c = \bigcup_n K_n$ for some $K_n \in K(X)$. Let $\{U_n\}$ be a countable sequence of X-open sets such that $\{B_0 \cap U_n\}$ is a π -base for B_0 ; then B_0 is also separable, so we can find a countable set C dense in B_0 . Finally, for each $c \in C$, choose a sequence $\mathcal{G}(c)$ of Y-open sets intersecting in $f_0(c)$. Consider the collection

$$\mathcal{G} = \{ [K_n : \emptyset] \cap [U_k] \cap [\{c\} : V] : n, k \in \omega, c \in C, V \in \mathcal{G}(c) \},\$$

and take a $(B, f) \in \bigcap \mathcal{G}$. We will show that $(B, f) = (B_0, f_0)$: assume that there is $x \in B \setminus B_0$. Choose an n so that $x \in K_n$, then $(B, f) \notin [K_n : \emptyset]$, which is impossible, so $B \subseteq B_0$. Conversely, if $B_0 \cap B^c \neq \emptyset$, there is some k such that $B_0 \cap U_k \subseteq B_0 \cap B^c$, so $(B, f) \notin [U_k]$, which is a contradiction again, so $B_0 \subseteq B$; thus, $B = B_0$.

Now, for each $c \in C$, and $V \in \mathcal{G}(c)$, $f(c) \in V$, so $f(c) \in \bigcap \mathcal{G}(c) = \{f_0(c)\}$. This means that f, f_0 are identical on the dense set C, so by continuity, $f = f_0$.

If $B_0 = X$, we can choose $\mathcal{G} = \{[U_k] \cap [\{c\} : V] : k \in \omega, c \in C, V \in \mathcal{G}(c)\}$, and the above argument still works.

Since $(CL(X), \tau_F)$ is embedded in (\mathcal{P}, τ_C) , 1st countability of (\mathcal{P}, τ_C) implies that of $(CL(X), \tau_F)$. Conversely, if Y is locally convex and completely metrizable, then 1st countability of $(CL(X), \tau_F)$ implies complete metrizability of $(C(X, Y), \tau_{CO})$ (through results of [19], [31]), and the restriction mapping $\eta : (CL(X), \tau_F) \times (C(X,Y), \tau_{CO}) \to (\mathcal{P}, \tau_C)$, defined as $\eta((B,f)) = (B, f \upharpoonright B)$, is continuous, open and onto (see [18], [21]). Thus, (\mathcal{P}, τ_C) is 1st countable if and only if $(CL(X), \tau_F)$ is. We can strengthen this result as follows:

Theorem 4.2. Let Y be a space where compact sets are both metrizable, and of countable character. The following are equivalent:

- (1) (\mathcal{P}, τ_C) is 1st countable;
- (2) $(CL(X), \tau_F)$ is 1st countable;
- (3) X is 1st countable, the open sets in X are hemicompact, and every $B \in CL(X)$ is separable.

Proof. Since $(CL(X), \tau_F)$ is embedded in (\mathcal{P}, τ_C) we have $(1) \Rightarrow (2)$; for $(2) \Leftrightarrow (3)$ see [19].

 $(3) \Rightarrow (1)$ Let $(B, f) \in \mathcal{P}$, and $C \subseteq B$ be a countable set dense in B. For every $c \in C$, let $\mathcal{B}(c)$ be a countable base of neighborhoods at c. Since B is hemicompact, we can find a cofinal subfamily $\{B_n\}$ in K(B). Let $n \in \omega$. Then $f(B_n)$ is compact and metrizable, so there is a countable base $\{O_n^m\}$ in $f(B_n)$. Let $\mathcal{G}(\overline{O_n^m})$ be a countable base of neighborhoods of the compact $\overline{O_n^m}$ for every $n, m \in \omega$. Enumerate the countable set $\bigcup_{m,n} \mathcal{G}(\overline{O_n^m})$ as $\{V_n\}$.

Let $\{U_n\}_n$ be a sequence of X-open sets such that $U_n \cap B = f^{-1}(V_n)$. Finally, let $\{K_n^i : i \in \omega\} \subseteq K(X)$ be a cofinal family in $K(U_n)$, and $\{D_m : m \in \omega\} \subseteq K(X)$ an increasing cofinal family in $K(B^c)$. We claim that the sets of the form

$$[D_m:\emptyset] \cap \bigcap_{c \in C'} [G_c] \cap \bigcap_{(i,n,s) \in I \times N \times S} [K_n^i:V_s],$$

where $C' \in [C]^{<\omega}$, $I, N, S \in [\omega]^{<\omega}$, and $G_c \in \mathcal{B}(c)$, form a τ_C -open base of neighborhoods at (B, f) (the symbol $[T]^{<\omega}$ stands for the set of finite subsets of T).

Indeed, if U is X-open and $(B, f) \in [U]$, then $(B, f) \in [G_c] \subseteq [U]$ for some $c \in C$, and $G_c \in \mathcal{B}(c)$ such that $G_c \subseteq U$. Further, if $(B, f) \in [K : \emptyset]$ for some $K \in K(X)$, then $(B, f) \in [D_m : \emptyset] \subseteq [K : \emptyset]$ for some $m \in \omega$.

Now, let $(B, f) \in [K : V]$, where $V \subseteq Y$ is nonempty open, and $K \in K(X)$ such that $K \cap B \neq \emptyset$. Then $f(B \cap K) \subseteq V$, and there is $n \in \omega$ with $K \cap B \subseteq B_n$, so $f(K \cap B) \subseteq f(B_n) \cap V$. There are $O_n^{m_0}, \ldots, O_n^{m_j}$ such that

$$f(K \cap B) \subseteq \bigcup_{i \leq j} \overline{O_n^{m_i}} \subseteq f(B_n) \cap V \subseteq V,$$

therefore, we can also find some $N \in [\omega]^{<\omega}$ so that $f(K \cap B) \subseteq \bigcup_{n \in N} V_n \subseteq V$. Observe, that for each $x \in K \cap B$ there is $n \in N$ with $f(x) \in V_n$ and an X-open neighborhood W_x of x such that $K \cap \overline{W_x} \subseteq U_n$, and $f(\overline{W_x} \cap K \cap B) \subseteq V_n$. Compactness of $K \cap B$ guarantees the existence of $P \in [\omega]^{<\omega}$ such that $K \cap B \subseteq \bigcup_{p \in P} W_{x_p}$ for some $x_p \in K \cap B$.

Now, $K \setminus \bigcup_{p \in P} W_{x_p} \subseteq B^c$, so there is a D_m with $K \setminus \bigcup_{p \in P} W_{x_p} \subseteq D_m$. For every $p \in P$ we can find an $n_p \in N$ so that $K \cap \overline{W_{x_p}} \subseteq U_{n_p}$, hence $K \cap \overline{W_{x_p}} \subseteq K_{n_p}^{i_p} \subseteq U_{n_p}$ for some $i_p \in \omega$. It follows, that $(B, f) \in [D_m : \emptyset] \cap \bigcap_{p \in P} [K_{n_p}^{i_p} : V_{n_p}] \subseteq [K : V]$. \Box

Since every weakly developable space is first countable, it follows, by Theorem 3.3, that $(C(X,Y), \tau_{CO})$ is first countable, if X is a hemicompact space, and Y is weakly k-developable. In the next theorem, we will extend this for a Y in which

compact sets are both metrizable, and of countable character. Note that in weakly k-developable spaces compacts are metrizable, and of countable character, but the converse is not true (ω_1 with the order topology is a counterexample [3]).

Theorem 4.3. Let X be a hemicompact space, and Y be a space where compact sets are both metrizable, and of countable character. Then $(C(X,Y), \tau_{CO})$ is 1st countable.

Proof. Assume first, that X is compact. Let $f \in C(X, Y)$, and $\{O_n\}$ be a countable base in the metrizable compact f(X). Then the compact $\overline{O_n}$ has a countable base of neighborhoods $\{V_n^m\}_m$ for every $n \in \omega$. By regularity of f(X), find a Y-open subset W_n^m of V_n^m such that

$$\overline{O_n} \subseteq f(X) \cap W_n^m \subseteq f(X) \cap \overline{W_n^m} \subseteq V_n^m,$$

and put $K_n^m = \overline{f^{-1}(W_n^m)}$ for every m, n. We claim, that

$$\{\bigcap_{(n,m)\in F} [K_n^m, V_n^m] : F \in [\omega \times \omega]^{<\omega}\}$$

is a countable τ_{CO} -open base of neighborhoods at f. Indeed, let [K, V] be a τ_{CO} open neighborhood of $f \in C(X, Y)$. Then $f(K) \subseteq V$, and we can find finite collections $\{O_{n_i} : i \leq k\}$ and $\{V_{n_i}^{m_i} : i \leq k\}$ such that

$$f(K) \subseteq \bigcup_{i \le k} \overline{O_{n_i}} \subseteq \bigcup_{i \le k} V_{n_i}^{m_i} \subseteq V.$$

Then $f(K_{n_i}^{m_i}) \subseteq f(X) \cap \overline{W_{n_i}^{m_i}} \subseteq V_{n_i}^{m_i}$, so $f \in [K_{n_i}^{m_i}, V_{n_i}^{m_i}]$ for all $i \leq k$; further, if $g \in \bigcap_{i \leq k} [K_{n_i}^{m_i}, V_{n_i}^{m_i}]$, then $g(K) \subseteq \bigcup_{i \leq k} g(K_{n_i}^{m_i}) \subseteq \bigcup_{i \leq k} V_{n_i}^{m_i} \subseteq V$, so $g \in [K, V]$. For a hemicompact X, the theorem now follows from Proposition 1.3(2),(3). \Box

Remark 4.4. It was proved in [30, Theorem 4.4.2] that, if $(C(X, \mathbb{R}), \tau_{CO})$ is 1st countable, then X is hemicompact.

References

- [1] A. Abd-Allah, Partial maps in algebra and topology, Ph.D. thesis, University of Wales, 1979.
- [2] A. Abd-Allah and R. Brown, A compact-open topology on partial maps with open domains, J. London Math. Soc. 21 (1980), 480-486.
- B. Alleche, Weakly developable and weakly k-developable spaces, and the Vietoris topology, Topology Appl. 111 (2001), 3-19.
- [4] B. Alleche, A.V. Arhangel'skii, and J. Calbrix, Weak developments and metrization, Topology Appl. 100 (2000), 23-38.
- [5] J. Back, Concepts of similarity for utility functions, J. of Math. Economics 1 (1986), 721-727.
- [6] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht, 1993.
- [7] P. I. Booth and R. Brown, Spaces of partial maps, fibered mapping spaces and the compact open topology, Topology Appl. 8 (1978), 181-195.
- [8] P. Brandi and R. Ceppitelli, Existence, uniqueness and continuous dependence for hereditary differential equations, J. Diff. Equations 81 (1989), 317-339.
- [9] P. Brandi, R. Ceppitelli and E. Holá, Topological properties of a new graph topology, J. Convex Anal. 5 (1998), 1-12.
- [10] P. Brandi, R. Ceppitelli and E. Holá, Kuratowski convergence on compacta and Hausdorff metric convergence on compacta, Comment. Math. Univ. Carolin. 40 (1999), 309-318.
- [11] S. Caterino, R. Ceppitelli, and Ľ. Holá, Well-posedness of optimization problems and Hausdorff metric on partial maps, Bolletino U.M.I. (8) 9 (2006), 645-656.
- [12] A. Di Concilio and S. A. Naimpally, Proximal set-open topologies and partial maps, Acta Math. Hung. 88 (2000), 227-237.

- [13] A. Di Concilio and S. A. Naimpally, Function space topologies on (partial) maps, Recent Progress in Function Spaces, Quaderni di Matematica 3, (1998), 1-34.
- [14] R. Engelking, General Topology, Helderman, Berlin, 1989.
- [15] V. V. Filippov, Basic topological structures of the theory of ordinary differential equations, Topology in Nonlinear Analysis, Banach Centrum Publications 35 (1996), 171-192.
- [16] G. Gruenhage, Generalized metric spaces, in Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984.
- [17] Ľ. Holá, Uniformizability of the generalized compact-open topology, Tatra Mt. Math. Publ. 14 (1998), 219-224.
- [18] Ľ. Holá, Complete metrizability of generalized compact-open topology, Topology Appl. 91 (1999), 159-167.
- [19] Ľ. Holá and S. Levi, Decomposition properties of hyperspace topologies, Set-Valued Anal. 5 (1997), 309-321.
- [20] Ľ. Holá, J. Pelant, and L. Zsilinszky, Developable hyperspaces are metrizable, Appl. Gen. Topol. 4 (2003), 351-360.
- [21] Ľ. Holá and L. Zsilinszky, Completeness properties of the generalized compact-open topology on partial functions with closed domains, Topology Appl. 110 (2001), 303-321.
- [22] Ľ. Holá and L. Zsilinszky, Vietoris topology on partial maps with compact domains, Topology Appl., to appear.
- [23] L. Holá and L. Zsilinszky, Čech-completeness and related properties of the generalized compact-open topology, J. Appl. Anal., to appear.
- [24] D. Holý and L. Matejička, C-upper semicontinuous and C*-upper semicontinuous multifunctions, Tatra Mt. Math. Publ. 34 (2006), 159-165.
- [25] E. Klein and A. Thompson, *Theory of Correspondences*, Wiley, New York, 1975.
- [26] H. P. Künzi, and L. B. Shapiro, On simultaneous extension of continuous partial functions, Proc. Amer. Math. Soc. 125 (1997), 1853-1859.
- [27] K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. 40 (1955), 61-67.
- [28] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, Fund. Math. 43 (1956), 114-138.
- [29] H.J. Langen, Convergence of dynamic programming models, Mathematics of Operations Research 6 (1981), 493-512.
- [30] R. A. McCoy and I. Ntantu, Topological properties of spaces of continuous functions, Springer-Verlag, Berlin, 1988.
- [31] R. A. McCoy and I. Ntantu, Completeness properties of function spaces, Topology Appl. 22 (1986), 191-206.
- [32] T. Mizokami, On hyperspaces of Moore spaces and d-paracompact spaces, Glasnik. Mat. 30 (1995), 69-72.
- [33] T. Mizokami, The embedding of a mapping space with compact open topology, Topology Appl. 82 (1998), 355-358.
- [34] T. Mizokami, N. Shimane, and F. Suwada, On the comparison of heredity of generalized metric properties to mapping spaces and hyperspaces, Topology Proc. 26 (2001/2002), 271-282.
- [35] P. J. Nyikos and L. Zsilinszky, Strong α-favorability of the (generalized) compact-open topology, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 1-8.
- [36] G. R. Sell, On the Fundamental Theory of Ordinary Differential Equations, J. Differential Equations 1 (1965), 371-392.
- [37] N. Shimane and T. Mizokami, On the embedding and developability of mapping spaces with compact-open topology, Topology Proc. 24 (1999), 313-322.
- [38] E. N. Stepanova, Extension of continuous functions and metrizability of paracompact pspaces, Mat. Zametki 53 (1993), 92-101.
- [39] W. Whitt, Continuity of Markov Processes and Dynamic Programs, Yale University, 1975.
- [40] S. K. Zaremba, Sur certaines familles de courbes en relation avec la theorie des equations differentielles, Rocznik Polskiego Tow. Matemat. 15 (1936), 83-105.
- [41] P. Zenor, On spaces with regular G_{δ} -diagonals, Pacific J. Math. 40 (1972), 759-763.

Academy of Sciences, Institute of Mathematics, Štefánikova 49, 81473 Bratislava, Slovakia

E-mail address: hola@mat.savba.sk

Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA

E-mail address: laszlo@uncp.edu