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Abstract. Developability and related properties (like weak developability,

Gδ-diagonal, G∗
δ -diagonal, submetrizability) of the generalized compact-open

topology τC on partial continuous functions P with closed domains in X and

values in Y are studied. First countability of (P, τC) is also characterized.

New results are obtained on weak developability, submetrizability, and first
countability for the classical compact-open topology on the space of continuous

functions with a general range space Y .

1. Introduction and preliminaries

Perhaps the first to consider a topological structure on the space of partial maps
was Zaremba [40] in 1936. Later, in 1955, Kuratowski [27] studied the Hausdorff
metric topology on the space of partial maps with compact domains.

The generalized compact-open topology τC on the space of partial continuous
functions with closed domains was introduced by J. Back in [5] in connection with
investigating utility functions emerging in mathematical economics. It also proved
to be a useful tool in studying convergence of dynamic programming models [39],
[29], as well as in applications to the theory of differential equations [8]. This new
interest in τC complements the attention paid to spaces of partial maps in the past
[40], [27], [28], [1], [2], [7], [36], and more recently in [15], [38], [26], [9], [10], [12],
[13], [21], [22], [23]. The Hausdorff metric topology on the space of partial maps
with closed domains was studied in [11].

Various topological properties of τC have already been established, e.g. separa-
tion axioms in [17], complete metrizability in [18], [23] and other completeness type
properties in [21], [23] and [35], respectively; also in [12], [13], the authors study
topological properties of spaces of partial maps in a more general setting.

Continuing the research started in [17],[35],[21],[23], in the present paper we will
focus on some generalized metric properties, and first countability of the generalized
compact-open topology, as well as of the classical compact-open topology.

Unless otherwise noted, all spaces are nontrivial Hausdorff spaces. If X is a
topological space, then Bc, intB, and B will stand for the complement, interior and
closure of B ⊆ X, respectively. Denote by CL(X) the family of nonempty closed
subsets of X, and by K(X) the nonempty compact subsets of X. For any B ∈
CL(X) and a topological space Y , C(B, Y ) will stand for the space of continuous
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functions from B to Y . A partial map is a pair (B, f) such that B ∈ CL(X), and
f ∈ C(B, Y ). Denote by P = P(X,Y ) the family of all partial maps.

The so-called generalized compact-open topology τC on P [21] is the topology
having subbase elements of the form

[U ] = {(B, f) ∈ P : B ∩ U 6= ∅},
[K : V ] = {(B, f) ∈ P : f(K ∩B) ⊆ V },

where U is open in X, K ∈ K(X), and V is an open (possibly empty) subset of Y .
The compact-open topology τCO on C(X,Y ) [14], [30] has subbase elements of

the form
[K,V ] = {f ∈ C(X,Y ) : f(K) ⊆ V },

where K ∈ K(X), and V ⊆ Y is open.
Denote by τF the Fell topology on CL(X) [6], [25] having subbase elements of

the form

U− = {A ∈ CL(X) : A ∩ U 6= ∅}, and (Kc)+ = {A ∈ CL(X) : A ⊆ Kc}
with U open in X, and K ∈ K(X). If we replace the compact set K by a closed
set we obtain subbase elements for the classical Vietoris topology [6].

The following proposition shows the relationship between the above mentioned
topologies, and will be helpful for our analysis.

Proposition 1.1 ([18], [23]).

(1) X, and (CL(X), τF ) embed in (P, τC); further (CL(X), τF ) embeds as a
closed set in (P, τC), if X is locally compact.

(2) Y , and (C(X,Y ), τCO) embed as closed subsets in (P, τC).

Let X be a hemicompact space (i.e. in K(X) ordered by inclusion, there exists a
countable cofinal subfamily [14]). If X is also locally compact, fix a cofinal sequence
{Cn} of compacts that is strongly increasing (i.e. Cn ⊆ intCn+1).

Suppose now that X is a hemicompact metrizable space with a compatible metric
d, and Y is Hausdorff. Denote by S(x, r) the open ball with center x, and radius r.
Let n ∈ ω. For a collection V of open sets in Y , a finite collection U of open balls
of radius at most 1

n that are subsets of Cn+1, and ϕ : U → V, the set

Hn(V,U , ϕ) = [Cn \ ∪U : ∅] ∩
⋂
U∈U

([U ] ∩ [U : ϕ(U)])

is open in (P, τC). Put Hn(V) = {Hn(V,U , ϕ) : U , ϕ}.

Lemma 1.2. Let X be a hemicompact metrizable space, and V an open cover of
Y . Then Hn(V) is an open cover of P for each n ∈ ω.

Proof. Let (B, f) ∈ P. If B ∩ Cn = ∅, put U = ∅ and ϕ = ∅, then (B, f) ∈
Hn(V,U , ϕ) ∈ Hn(V). If B ∩ Cn 6= ∅, then by continuity of f , and compactness of
B∩Cn, there exists a finite family U of open balls of radius ≤ 1

n that are subsets of

Cn+1 such that B∩Cn ⊆ ∪U , and for all U ∈ U there is VU ∈ V with f(B∩U) ⊆ VU .
If ϕ(U) = VU for all U ∈ U , then (B, f) ∈ Hn(V,U , ϕ) ∈ Hn(V). �

A space X is almost σ-compact, provided there is Cn ∈ K(X) with X =
⋃
n∈ω Cn

(see [30]). If T =
⊕

n Cn is the topological sum, and p : T → X is the natural map,
define the function

p∗ : (C(X,Y ), τCO)→ (C(T, Y ), τCO) via p∗(f) = f ◦ p.
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Proposition 1.3. Let Y be a topological space.

(1) If X is almost σ-compact, then p∗ is a continuous injection.
(2) If X is hemicompact, then p∗ is an embedding.
(3) (C(T, Y ), τCO) is homeomorphic to Πn(C(Cn, Y ), τCO).

Proof. (1) p is almost onto (i.e. its image is a dense subset of its range [30]), so [30,
Theorem 2.2.6(a), Corollary 2.2.8(b)] applies.

(2) p is k-covering (i.e. for each K ∈ K(X) there is L ∈ K(T ) with K ⊆ p(L)),
so [30, Corollary 2.2.8(b)] applies.

(3) See [30, Corollary 2.4.7] �

2. Gδ-diagonal and related properties

A topological space Y is submetrizable, if it has a coarser metrizable topology;
further, Y has a Gδ-diagonal (G∗δ-diagonal, resp.), provided there is sequence Vm
of open covers of Y such that {y} =

⋂
m St(y,Vm) ({y} =

⋂
m St(y,Vm), resp.) for

each y ∈ Y , where St(y,Vm) =
⋃
{V ∈ Vm : y ∈ V } (see [16]). Finally, Y has a

regular Gδ-diagonal, provided there is a sequence Vm of open covers of Y such that
if y0, y1 ∈ Y, y0 6= y1, then there exists m ∈ ω and open sets W0,W1 containing
y0, y1 respectively such that no member of Vm intersects both W0,W1 [41]. These
notions are related as follows:

submetrizable ⇒ regular Gδ-diagonal ⇒ G∗δ-diagonal ⇒ Gδ-diagonal.

Submetrizable spaces, spaces with a regular Gδ-diagonal, and with a G∗δ-diagonal,
respectively, are Hausdorff.

Theorem 2.1. The following are equivalent.

(1) (P, τC) is submetrizable (with a regular Gδ-diagonal, with a G∗δ-diagonal,
T2 with a Gδ-diagonal, resp.),

(2) X is hemicompact, metrizable, and Y is submetrizable (with a regular Gδ-
diagonal, with a G∗δ-diagonal, T2 with a Gδ-diagonal, resp.).

Proof. (1)⇒ (2) (CL(X), τF ), and Y are submetrizable (with a regularGδ-diagonal,
with a G∗δ-diagonal, T2 with a Gδ-diagonal, resp.), since they embed in (P, τC). It
follows that X is hemicompact, and metrizable [20, Theorem 7].

(2) ⇒ (1) Let X be a hemicompact metrizable space.
• Submetrizability of P: if Y is submetrizable, then there exists a topology

τ ′ on Y , which is weaker than the original topology τ on Y , such that (Y, τ ′) is
metrizable. Then by [18, Theorem 2.4], (P(X, (Y, τ ′)), τC) is metrizable, and hence,
(P(X, (Y, τ)), τC) is submetrizable.

Let {Vm}m be a sequence of open covers of Y satisfying the regular Gδ-diagonal
(G∗δ-diagonal, Gδ-diagonal, resp.) property. By Lemma 1.2, {Hn(Vm) : n,m ∈ ω}
is a sequence of open covers of (P, τC), and we will show that it is a regular Gδ-
diagonal (G∗δ-diagonal, Gδ-diagonal, resp.) sequence.
• Regular Gδ-diagonal property of P: let (B, f), (D, g) ∈ P be distinct. Assume

first that B 6= D, say, there is some x ∈ B \ D (the argument is identical, if

x ∈ D \ B). Find n so that S(x, 1
n ) ⊆ intCn \ D. Then W0 = [S(x, 1

3n )], and

W1 = [S(x, 1
n ) : ∅] are P-neighborhoods of (B, f), (D, g), respectively. If some
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Hn = H3n(V1,U , ϕ) ∈ H3n(V1) hits W0, choose (E, h) ∈ Hn ∩ W0. Let e ∈
E ∩ S(x, 1

3n ) ⊆ Cn, then there is U ∈ U with e ∈ U , so for all u ∈ U we have

d(x, u) ≤ d(x, e) + d(e, u) < 1
3n + diam(U) ≤ 1

3n + 2
3n = 1

n ;

thus, U ⊆ S(x, 1
n ), which implies that Hn misses W1.

Now assume that B = D, but f(x) 6= g(x) for some x ∈ B, and choose Y -open
neighborhoods W0,W1 of f(x), g(x), respectively, and m ∈ ω such that no member
of Vm hits both W0,W1. Find n ∈ ω so that S(x, 1

n ) ⊆ Cn,

f(B ∩ S(x, 1
n )) ⊆W0, and g(D ∩ S(x, 1

n )) ⊆W1.

Then

W0 = [S(x, 1
3n )] ∩ [S(x, 1

n ) : W0], and W1 = [S(x, 1
3n )] ∩ [S(x, 1

n ) : W1]

are P-neighborhoods of (B, f), (D, g), respectively. If some Hn = H3n(Vm,U , ϕ) ∈
H3n(Vm) hitsW0, choose (E, h) ∈ Hn∩W0. Let e ∈ E ∩S(x, 1

3n ) ⊆ Cn, then there

is U ∈ U with e ∈ U , so (as above) U ⊆ S(x, 1
n ); thus,

h(e) ∈ h(E ∩ U) ⊆ ϕ(U) ∩W0,

hence, ϕ(U) ∈ Vm will not hit W1, which implies that Hn misses W1.
• G∗δ-diagonal property of P: let D0 = (B0, f0) ∈ P, and

D ∈
⋂

n,m∈ω
St(D0,Hn(Vm)), where D = (B, f).

It suffices to prove that D = D0:

Claim. B = B0

Suppose there is x ∈ B \B0. Let n be such that x ∈ Cn, and B0 ∩ Cn 6= ∅. Let

k > n be such that S(x, 1
k ) ⊆ intCn+1 \B0. Since D ∈ St(D0,H4k(V1), there is

(H, g) ∈ [S(x, 1/4k)] ∩ St(D0,H4k(V1)),

and hence some z ∈ H ∩ S(x, 1
4k ). Further, there is a finite family U of open balls

of radius at most 1
4k , and ϕ : U → V1 such that (H, g), D0 ∈ H4k(V1,U , ϕ). But

then there is U ∈ U with z ∈ U and U ∩B0 6= ∅, which is a contradiction, since for
b ∈ B0 ∩U we have d(z, b) ≤ diam(U) ≤ 1

2k , so d(x, b) ≤ d(x, z) + d(z, b) ≤ 3
4k <

1
k ;

on the other side, S(x, 1
k ) ⊆ Bc0, so d(x, b) ≥ 1

k .
Now suppose x ∈ B0 \ B, and L is an open set with compact closure such that

x ∈ L ⊆ L ⊆ Bc; then [L : ∅] is a τC-neighborhood of D. There is n ∈ ω and

k > n such that x ∈ Cn, and S(x, 1
k ) ⊆ L. Since D ∈ St(D0,H3k(V1)), there

is (H, g) ∈ [L : ∅] ∩ St(D0,H3k(V1)), so there is a finite family U of open balls
of radius at most 1

3k , and ϕ : U → V1 such that D0, (H, g) ∈ H3k(V1,U , ϕ). It
follows that for some U ∈ U , x ∈ U and U ∩ H 6= ∅, say, h ∈ U ∩ H. Then
d(x, h) ≤ diam(U) ≤ 2

3k <
1
k , so h ∈ L, which is impossible since (H, g) ∈ [L : ∅].

Claim. f0 = f .

Suppose f0(x) 6= f(x) for some x ∈ B = B0. Then there is m ∈ ω with

f(x) /∈ St(f0(x),Vm). We can find an X-open set O with compact closure such

that x ∈ O, and f(O∩B) ⊆ Y \St(f0(x),Vm). Let n ∈ ω be such that x ∈ Cn, and

S(x, 3
n ) ⊆ O. Then [O : Y \ St(f0(x),Vm)] is a τC-neighborhood of D, so there is

(H, g) ∈ [O : Y \ St(f0(x),Vm)] ∩ St(D0,Hn(Vm)).
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Then we can find a finite family U of open balls of radius at most 1
n , and

ϕ : U → Vm such that (H, g), D0 ∈ Hn(Vm,U , ϕ). Hence, there is U ∈ U with x ∈ U
and U ∩H 6= ∅ such that f0(x) ∈ ϕ(U), and g(U ∩H) ⊆ ϕ(U); thus, g(U ∩H) ⊆
St(f0(x),Vm). On the other side, if h ∈ U ∩ H, then d(x, h) ≤ diam(U) ≤ 2

n , so

U ∩H ⊆ S(x, 3
n ) ⊆ O; thus, g(U ∩H) ⊆ g(O ∩H) ⊆ (St(f0(x),Vm))c.

• Gδ-diagonal property of P: let D0 = (B0, f0) ∈ P and

D ∈
⋂

n,m∈ω
St(D0,Hn(Vm)), where D = (B, f).

We will show that D = D0: let x ∈ B. We can find an n such that x ∈ Cn, and
B0 ∩ Cn 6= ∅. Fix m ∈ ω,m ≥ n. Then there is a finite family U of open balls of
radius at most 1

m that are subsets of Cm+1, and a function ϕ : U → Vm such that
D,D0 ∈ Hm(Vm,U , ϕ). Then there exists Um ∈ U with x ∈ Um, and B0 ∩ Um 6= ∅
such that f(x) ∈ ϕ(Um), and f0(B0 ∩ Um) ⊆ ϕ(Um). Then {Um}m is a local base
at x, thus, {x} =

⋂
mB0∩Um. It follows, that f(x) ∈

⋂
m St(f0(x),Vm) = {f0(x)},

so D ⊆ D0. It is also true, that D0 ∈
⋂
n,m St(D,Hn(Vm)), so we can argue as

above to get D0 ⊆ D; hence, {D0} =
⋂
n,m∈ω St(D0,Hn(Vm)). �

It was proved in [37] that, if X is compact and Y has a regular Gδ-diagonal
(G∗δ-diagonal, Gδ-diagonal, resp.), then (C(X,Y ), τCO) has a regular Gδ-diagonal
(G∗δ-diagonal, Gδ-diagonal, resp.); then, in [34], the same was proved for an almost
σ-compact X. In our next result we give another proof, and also show that if
X is an almost σ-compact space, and Y is submetrizable, then (C(X,Y ), τCO) is
submetrizable. For Y = R, the results concerning submetrizability, and the Gδ-
diagonal property, were proved in [30].

Theorem 2.2. Let X be an almost σ-compact space, and Y be submetrizable (have
a regular Gδ-diagonal, G

∗
δ-diagonal, Gδ-diagonal, resp.). Then (C(X,Y ), τCO) is

submetrizable (has a regular Gδ-diagonal, G
∗
δ-diagonal, Gδ-diagonal, resp.).

Proof. Let X,T =
⊕

n Cn, and p : T → X be as in Proposition 1.3(1), and Y have
a regular Gδ-diagonal (G∗δ-diagonal, Gδ-diagonal, resp.). Since these diagonal prop-
erties are countably productive, (C(T, Y ), τCO) has them by Proposition 1.3(3), so
by Proposition 1.3(1), (C(X,Y ), τCO) has a coarser topology having these diagonal
properties; thus, (C(X,Y ), τCO) itself has them.

Let (Y, τ) be submetrizable, and τ ′ ⊆ τ be a metrizable topology on Y . Then
(C(T, (Y, τ ′)), τCO) is metrizable by [30, Exercise IV.9.1(a)], let α be this metrizable
topology on C(T, (Y, τ ′)) that is coarser than the original (C(T, (Y, τ)), τCO). The
family β = {(p∗)−1(U) : U ∈ α} is a topology on C(X,Y ) coarser than τCO. The
mapping p∗ : (C(X,Y ), β)→ (p∗(C(X,Y ), α) is a homeomorphism, so (C(X,Y ), β)
is metrizable, and (C(X, (Y, τ)), τCO) is submetrizable. �

3. Developability and related properties

Let Y be a topological space. A sequence {Vn} of open covers of Y is called a
(weak) development, if for every y ∈ Y and {Vn} such that y ∈ Vn ∈ Vn for every
n, the sequence {Vn} (resp. {

⋂
i≤n Vi}) is a base at y. A space with a (weak)

development is called (weakly) developable; a Moore space is a regular developable
space. A sequence {Vn} of open covers of Y is called a weak k-development, provided
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for each K ∈ K(Y ), and every finiteWn ⊆ Vn such that K ⊆
⋃
Wn, and K∩W 6= ∅

for every W ∈ Wn, the sequence {
⋂
i≤n(

⋃
Wi)} is a base at K. A space with a

weak k-development is called weakly k-developable.
Observe, that a T1 weakly developable space has a Gδ-diagonal, and developable,

as well as, weakly k-developable spaces are weakly developable. On the other side,
there are weakly k-developable spaces which are not developable [4], as well as
developable Hausdorff spaces that are not weakly k-developable [3].

Theorem 3.1. Let X be a hemicompact metrizable space, and Y a weakly k-
developable space. Then (P, τC) is weakly developable.

Proof. Let {Vn} be a weak k-development of Y , and, without loss of generality,
suppose that Vn+1 is a refinement of Vn for every n ∈ ω. We claim that {Hn(Vn)}
is a weak development in (P, τC): that Hn(Vn) is an open cover of (P, τC) for every
n ∈ ω, follows from Lemma 1.2.

Let (B, f) ∈ (P, τC), and Hn = Hn(Vn,Un, ϕn) ∈ Hn(Vn) be such that (B, f) ∈
Hn for every n ∈ ω. To prove that

⋂
i≤nHn is a base at (B, f), first choose an X-

open G with (B, f) ∈ [G], and pick some b ∈ B∩G. There is n ∈ ω such that b ∈ Cn,
and S(b, 1/n) ⊆ G. Now, (B, f) ∈ H3n, and since b ∈ Cn, we can find a U ∈ U3n

with b ∈ U ; thus, if (C, g) ∈ H3n, and c ∈ C ∩ U , then d(b, c) ≤ diamU ≤ 2
3n <

1
n ,

so C ∩G 6= ∅, which implies, that (B, f) ∈ H3n ⊆ [G].
Now let (B, f) ∈ [K : V ], where K ∈ K(X), V is Y -open, and assume B∩K = ∅.

Then dist(K,B) > 0, so we can find n ∈ ω such thatK ⊆ Cn, and dist(K,B) > 2/n.
To show that Hn ⊆ [K : V ], choose (C, g) ∈ Hn. If Un = ∅, then C ∩K = ∅, and
we are done. If Un 6= ∅, assume that K ∩ U 6= ∅ for some U ∈ Un, and find
k ∈ K ∩ U, b ∈ B ∩ U . Then dist(K,B) ≤ d(k, b) ≤ diamU ≤ 2/n, which is
impossible, so K ∩ (

⋃
Un) = ∅; thus, K ⊆ Cn \

⋃
Un, and again, C ∩K = ∅.

Finally, suppose B ∩ K 6= ∅. Then f(B ∩ K) ⊆ V , so by compactness of K,

there is δ > 0 such that f(B ∩ S(K, δ)) ⊆ V , and S(K, δ) is compact, where

S(K, δ) =
⋃
x∈K S(x, δ). Choose n0 ∈ ω so that 2

n0
< δ and S(K, δ) ⊆ Cn0

. For

n ≥ n0, there is a finite collection ∅ 6= U ′n ⊆ Un such that U ∩ S(K, δ) ∩ B 6= ∅ for
all U ∈ U ′n; put Wn = {ϕn(U) : U ∈ U ′n}.

Then f(S(K, δ) ∩B) ⊆
⋃
Wn, and f(S(K, δ) ∩B) ∩W 6= ∅ for every W ∈ Wn.

For n < n0, Vn0
is a refinement of Vn, so for each W ∈ Wn0

there is VW ∈ Vn with
W ⊆ VW ; put Wn = {VW : W ∈ Wn0}. Since {Vn} is a weak k-development, there
is k > n0 such that

f(S(K, δ) ∩B) ⊆
⋂
n≤k

(
⋃
Wn) ⊆ V.

Let n0 ≤ n ≤ k, and choose (C, g) ∈ Hn. If C ∩K = ∅, we are done, so suppose
∅ 6= C ∩ K ⊆ C ∩ Cn. If c ∈ C ∩ K, then c ∈ U ∈ Un, and if b ∈ B ∩ U , then
d(c, b) ≤ diam(U) ≤ 2

n < δ, so U ∈ U ′n.
It follows, that U ′′n = {U ∈ Un : U ∩K ∩ C 6= ∅} ⊆ U ′n, so

g(C ∩K) ⊆
⋃
{g(U ∩ C) : U ∈ U ′′n} ⊆

⋃
{ϕn(U) : U ∈ U ′′n} ⊆

⋃
Wn.

Now, if (C, g) ∈
⋂
n≤kHn, then

g(C ∩K) ⊆
⋂

n0≤n≤k

(
⋃
Wn) =

⋂
n≤k

(
⋃
Wn) ⊆ V,

so (C, g) ∈ [K : V ]. �
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Remark 3.2. If (P, τC) is a weakly developable T2 space, then (CL(X), τF ) is,
too (Proposition 1.1); thus, (CL(X), τF ) is T2 with a Gδ-diagonal, hence, X is a
hemicompact metrizable space by [20, Theorem 7].

Theorem 3.3. Let X be a hemicompact space, and Y a weakly k-developable space.
Then (C(X,Y ), τCO) is weakly developable.

Proof. Let {Cn} be a cofinal family in K(X). Given n ∈ ω, a collection V of Y -open
sets, a finite collection U of open sets in Cn covering Cn, and ϕ : U → V, the set

Gn(V,U , ϕ) =
⋂
U∈U

[U,ϕ(U)]

is open in (C(X,Y ), τCO). Let {Vn} be a weak k-development of Y such that Vn+1

refines Vn for every n ∈ ω. Then

Gn(Vn) = {Gn(Vn,U , ϕ) : U , ϕ}
is an open cover of (C(X,Y ), τCO) for each n: let f ∈ C(X,Y ), and n ∈ ω be
fixed. Then there is a finite collection V ′n ⊆ Vn that covers the compact f(Cn).
By regularity of Cn, for each V ∈ V ′n and x ∈ Cn ∩ f−1(V ), find a Cn-open U(x)

such that x ∈ U(x) ⊆ U(x) ⊆ Cn ∩ f−1(V ), and choose a finite subcover U of
{U(x) : x ∈ Cn ∩ f−1(

⋃
V ′n)}. Then for each U ∈ U , there is VU ∈ V ′n with

f(U) ⊆ VU , so we can define ϕ(U) = VU . Clearly, f ∈ Gn(Vn,U , ϕ).
To prove that {Gn(Vn)} is a weak development, take f ∈ C(X,Y ), and Gn =

Gn(Vn,Un, ϕn) ∈ Gn(Vn) such that f ∈ Gn for every n ∈ ω. Consider [K,V ] ∈ τCO
with f ∈ [K,V ], and choose n0 so that K ⊆ Cn0

.
For n ≥ n0, let U ′n ⊆ Un be such that K ⊆

⋃
U ′n, and K ∩U 6= ∅ for all U ∈ U ′n,

and put Wn = {ϕn(U) : U ∈ U ′n}. For n < n0, Vn0 is a refinement of Vn, so for
each W ∈ Wn0

, there is VW ∈ Vn with W ⊆ VW ; put Wn = {VW : W ∈ Wn0
}.

Observe, that for all n ≥ n0, f(K) ⊆
⋃
Wn and f(K) ∩W 6= ∅ for all W ∈ Wn,

so by weak k-developability of Y , there is k > n0 such that

f(K) ⊆
⋂
n≤k

(
⋃
Wn) ⊆ V.

Let n0 ≤ n ≤ k, and g ∈ Gn. Then g(U) ⊆ ϕn(U) for each U ∈ Un; thus,

g(K) ⊆
⋃
{g(U) : U ∈ U ′n} ⊆

⋃
Wn.

It follows, that if g ∈
⋂
n≤kGn, then

g(K) ⊆
⋂

n0≤n≤k

(
⋃
Wn) =

⋂
n≤k

(
⋃
Wn) ⊆ V,

so g ∈ [K,V ], hence, f ∈
⋂
n≤kGn ⊆ [K,V ]. �

As for developability of (C(X,Y ), τCO), it is known that if X is hemicompact
with metrizable compacts, and Y is developable, then (C(X,Y ), τCO) is developable
[33]; further, if X is hemicompact, and Y is a Moore space with a regular Gδ-
diagonal, then (C(X,Y ), τCO) is a Moore space [37]. The following question from
[34] seems to be still open:

Problem 3.4. Let X be a compact space, and Y a Moore space. Is (C(X,Y ), τCO)
a Moore space?

In the last part of the paragraph, we have a result about developability of (P, τC):



8 L’UBICA HOLÁ AND LÁSZLÓ ZSILINSZKY

Theorem 3.5. Let X be a topological sum of a countable family of compact metriz-
able spaces, and Y be developable. Then (P, τC) is developable.

Proof. First assume that X is compact. Then the generalized compact-open topol-
ogy τC , and the Vietoris topology τV coincide on P. Since X × Y is developable,
also (K(X × Y ), τV ) is developable [32], so P ⊆ K(X × Y ) is developable.

Now, let X =
⊕

n∈ω Cn, where Cn is a metrizable compact for each n. Consider
Pn = P(Cn, Y ) ∪ {∅}, with the topology τ ′C = τC ∪ {{∅}}. If (B, f) ∈ P, define
(Dn)n ∈ ΠnPn so that

Dn =

{
(Bn, fn), if Bn = B ∩ Cn 6= ∅, fn = f �Bn

,

∅, if B ∩ Cn = ∅,

and put ψ(B, f) = (Dn)n. It is not hard to show, that ψ is a homeomorphism,
so (P, τC) is developable, since ΠnPn is (as a countable product of developable
spaces). �

4. First countability and related properties

Theorem 4.1. The following are equivalent:

(1) points in (P, τC) are Gδ,
(2) X-open sets are σ-compact, each A ∈ CL(X) has a countable π-base (in

A), and points in Y are Gδ.

Proof. (1)⇒(2) Points in (CL(X), τF ) and Y are Gδ, since they embed in (P, τC).
Then, by [20, Proposition 4.3(ii)], open sets in X are σ-compact; further, let A ∈
CL(X), and Bn = ((Kn)c)+ ∩

⋂
i∈In U

n
i be basic τF -open sets such that {A} =⋂

n∈ω Bn. If ∅ 6= U ⊆ A is open in A, and for all n, and i ∈ In, there exists
ani ∈ Uni ∩ A \ U , then A \ U ∈

⋂
n∈ω Bn, which is a contradiction. It follows, that

{A ∩ Uni : n ∈ ω, i ∈ In} is a countable π-base in A.
(2)⇒(1) Let (B0, f0) ∈ P, B0 6= X, and Bc0 =

⋃
nKn for some Kn ∈ K(X).

Let {Un} be a countable sequence of X-open sets such that {B0 ∩ Un} is a π-base
for B0; then B0 is also separable, so we can find a countable set C dense in B0.
Finally, for each c ∈ C, choose a sequence G(c) of Y -open sets intersecting in f0(c).
Consider the collection

G = {[Kn : ∅] ∩ [Uk] ∩ [{c} : V ] : n, k ∈ ω, c ∈ C, V ∈ G(c)},
and take a (B, f) ∈

⋂
G. We will show that (B, f) = (B0, f0): assume that there

is x ∈ B \ B0. Choose an n so that x ∈ Kn, then (B, f) /∈ [Kn : ∅], which is
impossible, so B ⊆ B0. Conversely, if B0 ∩ Bc 6= ∅, there is some k such that
B0 ∩ Uk ⊆ B0 ∩ Bc, so (B, f) /∈ [Uk], which is a contradiction again, so B0 ⊆ B;
thus, B = B0.

Now, for each c ∈ C, and V ∈ G(c), f(c) ∈ V , so f(c) ∈
⋂
G(c) = {f0(c)}. This

means that f, f0 are identical on the dense set C, so by continuity, f = f0.
If B0 = X, we can choose G = {[Uk] ∩ [{c} : V ] : k ∈ ω, c ∈ C, V ∈ G(c)}, and

the above argument still works. �

Since (CL(X), τF ) is embedded in (P, τC), 1st countability of (P, τC) implies that
of (CL(X), τF ). Conversely, if Y is locally convex and completely metrizable, then
1st countability of (CL(X), τF ) implies complete metrizability of (C(X,Y ), τCO)
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(through results of [19], [31]), and the restriction mapping η : (CL(X), τF ) ×
(C(X,Y ), τCO) → (P, τC), defined as η((B, f)) = (B, f � B), is continuous, open
and onto (see [18], [21]). Thus, (P, τC) is 1st countable if and only if (CL(X), τF )
is. We can strengthen this result as follows:

Theorem 4.2. Let Y be a space where compact sets are both metrizable, and of
countable character. The following are equivalent:

(1) (P, τC) is 1st countable;
(2) (CL(X), τF ) is 1st countable;
(3) X is 1st countable, the open sets in X are hemicompact, and every B ∈

CL(X) is separable.

Proof. Since (CL(X), τF ) is embedded in (P, τC) we have (1)⇒(2); for (2)⇔(3) see
[19].

(3)⇒(1) Let (B, f) ∈ P, and C ⊆ B be a countable set dense in B. For every
c ∈ C, let B(c) be a countable base of neighborhoods at c. Since B is hemicompact,
we can find a cofinal subfamily {Bn} in K(B). Let n ∈ ω. Then f(Bn) is compact
and metrizable, so there is a countable base {Omn } in f(Bn). Let G(Omn ) be a
countable base of neighborhoods of the compact Omn for every n,m ∈ ω. Enumerate
the countable set

⋃
m,n G(Omn ) as {Vn}.

Let {Un}n be a sequence of X-open sets such that Un ∩ B = f−1(Vn). Finally,
let {Ki

n : i ∈ ω} ⊆ K(X) be a cofinal family in K(Un), and {Dm : m ∈ ω} ⊆ K(X)
an increasing cofinal family in K(Bc). We claim that the sets of the form

[Dm : ∅] ∩
⋂
c∈C′

[Gc] ∩
⋂

(i,n,s)∈I×N×S

[Ki
n : Vs],

where C ′ ∈ [C]<ω, I,N, S ∈ [ω]<ω, and Gc ∈ B(c), form a τC-open base of neigh-
borhoods at (B, f) (the symbol [T ]<ω stands for the set of finite subsets of T ).

Indeed, if U is X-open and (B, f) ∈ [U ], then (B, f) ∈ [Gc] ⊆ [U ] for some
c ∈ C, and Gc ∈ B(c) such that Gc ⊆ U . Further, if (B, f) ∈ [K : ∅] for some
K ∈ K(X), then (B, f) ∈ [Dm : ∅] ⊆ [K : ∅] for some m ∈ ω.

Now, let (B, f) ∈ [K : V ], where V ⊆ Y is nonempty open, and K ∈ K(X) such
that K ∩ B 6= ∅. Then f(B ∩K) ⊆ V , and there is n ∈ ω with K ∩ B ⊆ Bn, so
f(K ∩B) ⊆ f(Bn) ∩ V . There are Om0

n , . . . , O
mj
n such that

f(K ∩B) ⊆
⋃
i≤j

Omi
n ⊆ f(Bn) ∩ V ⊆ V,

therefore, we can also find some N ∈ [ω]<ω so that f(K ∩ B) ⊆
⋃
n∈N Vn ⊆ V .

Observe, that for each x ∈ K ∩ B there is n ∈ N with f(x) ∈ Vn and an X-
open neighborhood Wx of x such that K ∩Wx ⊆ Un, and f(Wx ∩K ∩ B) ⊆ Vn.
Compactness of K ∩ B guarantees the existence of P ∈ [ω]<ω such that K ∩ B ⊆⋃
p∈P Wxp for some xp ∈ K ∩B.

Now, K \
⋃
p∈P Wxp

⊆ Bc, so there is a Dm with K \
⋃
p∈P Wxp

⊆ Dm. For every

p ∈ P we can find an np ∈ N so that K ∩Wxp
⊆ Unp

, hence K ∩Wxp
⊆ Kip

np ⊆ Unp

for some ip ∈ ω. It follows, that (B, f) ∈ [Dm : ∅]∩
⋂
p∈P [K

ip
np : Vnp ] ⊆ [K : V ]. �

Since every weakly developable space is first countable, it follows, by Theorem
3.3, that (C(X,Y ), τCO) is first countable, if X is a hemicompact space, and Y is
weakly k-developable. In the next theorem, we will extend this for a Y in which
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compact sets are both metrizable, and of countable character. Note that in weakly
k-developable spaces compacts are metrizable, and of countable character, but the
converse is not true (ω1 with the order topology is a counterexample [3]).

Theorem 4.3. Let X be a hemicompact space, and Y be a space where compact
sets are both metrizable, and of countable character. Then (C(X,Y ), τCO) is 1st
countable.

Proof. Assume first, that X is compact. Let f ∈ C(X,Y ), and {On} be a countable
base in the metrizable compact f(X). Then the compact On has a countable base
of neighborhoods {V mn }m for every n ∈ ω. By regularity of f(X), find a Y -open
subset Wm

n of V mn such that

On ⊆ f(X) ∩Wm
n ⊆ f(X) ∩Wm

n ⊆ V mn ,

and put Km
n = f−1(Wm

n ) for every m,n. We claim, that

{
⋂

(n,m)∈F

[Km
n , V

m
n ] : F ∈ [ω × ω]<ω}

is a countable τCO-open base of neighborhoods at f . Indeed, let [K,V ] be a τCO-
open neighborhood of f ∈ C(X,Y ). Then f(K) ⊆ V , and we can find finite
collections {Oni : i ≤ k} and {V mi

ni
: i ≤ k} such that

f(K) ⊆
⋃
i≤k

Oni
⊆

⋃
i≤k

V mi
ni
⊆ V.

Then f(Kmi
ni

) ⊆ f(X) ∩Wmi
ni ⊆ V mi

ni
, so f ∈ [Kmi

ni
, V mi
ni

] for all i ≤ k; further, if
g ∈

⋂
i≤k[Kmi

ni
, V mi
ni

], then g(K) ⊆
⋃
i≤k g(Kmi

ni
) ⊆

⋃
i≤k V

mi
ni
⊆ V , so g ∈ [K,V ].

For a hemicompact X, the theorem now follows from Proposition 1.3(2),(3). �

Remark 4.4. It was proved in [30, Theorem 4.4.2] that, if (C(X,R), τCO) is 1st
countable, then X is hemicompact.
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[9] P. Brandi, R. Ceppitelli and L’. Holá, Topological properties of a new graph topology, J.
Convex Anal. 5 (1998), 1-12.
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